Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию...

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию... www.toehelp.ru

Главная Цены Оплата Примеры решений Отзывы Ccылки Теория Книги Сотрудничество Форум
   Примеры решений / Высшая математика / Теория Вероятности
Примеры решений Задач по Теории Вероятности
  • Пример 1.
       В партии из 23 деталей находятся 10 бракованных. Вынимают из партии наудачу две детали. Используя классическое определение теории вероятности определить, какова вероятность того, что обе детали окажутся бракованными.
     
  • Пример 2.
       В ящике лежат шары: 4 белых, 10 красных, 8 зеленых, 9 коричневых. Из ящика вынимают один шар. Пользуясь теоремой сложения вероятностей определить, какова вероятность, что шар окажется цветным (не белым) ?
     
  • Пример 3.
       В вопросах к зачету имеются 75% вопросов, на которые студенты знают ответы. Преподаватель выбирает из них два вопроса и задает их студенту. Определить вероятность того, что среди полученных студентом вопросов есть хотя бы один, на который он знает ответ.
     
  • Пример 4.
       На складе находятся 26 деталей из которых 13 стандартные. Рабочий берет наугад две детали. Пользуясь теоремой умножения вероятностей зависимых событий определить вероятность того, что обе детали окажутся стандартными.
     
  • Пример 5.
       В сборочный цех поступили детали с трех станков. На первом станке изготовлено 51% деталей от их общего количества, на втором станке 24% и на третьем 25%. При этом на первом станке было изготовлено 90% деталей первого сорта, на втором 80% и на третьем 70%. Используя формулу полной вероятности определить, какова вероятность того, что взятая наугад деталь окажется первого сорта ?
     
  • Пример 6.
       Имеется три одинаковых по виду ящика. В первом ящике находится 26 белых шаров, во втором 15 белых и 11 черных, в третьем ящике 26 черных шаров. Из выбранного наугад ящика вынули белый шар. Используя формулу Байеса вычислить вероятность того, что белый шар вынут из первого ящика.
     
  • Пример 7.
       Вероятность изготовления нестандартной детали равна 0.11. Пользуясь формулой Бернулли найти вероятность того, что из пяти наудачу взятых деталей будут четыре стандартных.
     
  • Пример 8.
       Дано следующее распределение дискретной случайной величины Х
    X1245
     P  0.31  0.1  0.29  0.3 
    Найти ее математическое ожидание, дисперсию и среднеквадратичное отклонение, используя формулы для их определения.
     
  • Пример 9.
       Сколько нужно выполнить наблюдений, чтобы выборочное среднее отличалось от математического ожидания на величину равную 13, если по результатам предыдущих измерений известно среднее квадратическое равно 48. Пользуясь формулой для нахождения объема выборочной совокупности найти результат с надежностью равной 0.95, при этом значение функции Лапласа равно Ф(t)=0.475 и параметр t=1.96
     
  • Пример 10.
       Случайная величина Y распределена по нормальному закону с математическим ожиданием a=75 и среднеквадратическим значением равным 28. Используя функцию Лапласа найти вероятность того, что в результате испытания случайная величина примет значение в интервале [+147,+231]

  Множество других примеров по теории вероятности находится в соответствующих разделах лекций на нашем сайте в разделе Теория / Теория Вероятности