www.toehelp.ru

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию ...

/ / / Лекция 25. Работа сельсинов в трансформаторном режиме

§ 5.6. Работа сельсинов в трансформаторном режиме

Простейшая схема работы сельсинов в трансформаторном режиме показана рис. 5.11.

Рис. 5.11. Трансформаторная схема "передачи угла". УПУ – усилительно-преобразовательной устройство; СД – силовой двигатель; О – объект управления

Однофазная обмотка возбуждения сельсина-датчика создает пульсирующий магнитный поток Фвд, который индуцирует в обмотках синхронизации ЭДС:

Под действием ЭДС по обмоткам и линиям связи протекают токи, обобщенное выражение которых будет Iф= Eф/2Zф. Здесь индекс "ф" означает ток, ЭДС и полное сопротивление фазы ротора плюс половину сопротивления линии. Токи, протекая по фазам приемника, создают результирующую НС приемника Fрп. Ее пространственное положение зависит от положения обмоток синхронизации датчика и приемника относительно своих обмоток возбуждения. За исходное принимается такое положение, при котором эта НС будет перпендикулярна обмотке возбуждения приемника.

При повороте датчика на какой-то уголaдна такой же угол, но в обратную сторону повернется результирующая НС приемника. Продольная составляющая этой НС Fрпd наведет в обмотке возбуждения приемника ЭДС, которая через усилительно-преобразовательное устройство (УПУ) будет воздействовать на силовой двигатель (СД). Тот придет во вращение и начнет поворачивать объект управления (О), а вместе с ним и ротор сельсина-приемника до тех пор, пока результирующая НС Fрп не повернется на заданный угол, т.е. снова не станет перпендикулярной оси обмотки возбуждения приемника, ибо только в этом положении в ней не будет ЭДС и двигатель перестанет вращаться.

На первый взгляд поворот результирующей НС приемника в сторону, противоположную датчику, кажется странным. Однако рис. 5.12 поясняет это обстоятельство. При этом нужно иметь в виду, что НС датчика всегда направлена встречно НС возбуждения (принцип Ленца), а токи в одноименных фазах датчика и приемника протекают в противоположных направлениях.

Рис. 5.12. К вопросу о повороте НС сельсина приемника в трансформаторной схеме "передачи угла"

Найдем величину и закон изменения ЭДС в обмотке возбуждения сельсина-приемника. Для чего сначала спроектируем НС отдельных фаз приемника на оси d и q

С учетом значений ЭДС, обобщенного значения токов и НС фаз

Результирующая НС

т.е. результирующая НС обмоток синхронизации сельсина-приемника не зависит от угла рассогласования и всегда в 1, 5 раза превышает амплитуду НС одной фазы.

Намагничивающая сила Fd создает магнитный поток Фd, который наводит в обмотке возбуждения датчика ЭДС

т.е. выходная ЭДС является гармонической функцией угла рассогласования датчика и приемника. Поскольку в неявнополюсных сельсинах такую зависимость реализовать проще, чем в явнополюсных, трансформаторные сельсины целесообразнее выполнять неявнополюсной конструкции.

Точность трансформаторных сельсинов-приемниковопределяется так же, как и точность индикаторных сельсинов-датчиков, т.е. ошибкой асимметрии, в зависимости от которой трансформаторные сельсины-приемники делятся на семь классов точности.

Качество работы трансформаторной схемы зависит от ряда факторов: 1) удельного выходного напряжения - Uу; 2) остаточного выходного напряжения - UО; 3) удельной выходной мощности - Ру.

Удельное выходное напряжение - напряжение при q = 10, определяет чувствительность всей системы. Повысить его значение можно путем увеличения числа витков обмотки возбуждения, разумеется, до определенных пределов, ибо при чрезмерном увеличении Wв возрастает внутреннее сопротивление обмотки, увеличивается внутреннее падение напряжения и снижается выходная мощность сельсина. Кроме неявнополюсной конструкции, трансформаторные сельсины отличаются от индикаторных еще и большим числом витков обмотки возбуждения.

Остаточное напряжение - напряжение на обмотке возбуждения при отсутствии угла рассогласования. Оно обуславливается магнитной связью результирующей НС приемника и перпендикулярной ей обмоткой возбуждения, которая возникает вследствие погрешностей изготовления, наличия потоков рассеяния и других причин, главным образом технологического характера. Обычно U0 = 0,2 – 0,5 В.

Удельная выходная мощность - мощность приq = 10. Чем выше этот показатель, тем раньше начинает работать усилитель, тем выше становиться чувствительность системы.

§ 5.7. Некоторые особенности конструкции сельсинов

Все сельсины (индикаторные и трансформаторные) выпускаются только двухполюсными. Почему? Ответ на вопрос смотрите на рис. 5.13, где показано два положения обмоток синхронизации четырехполюсного сельсина: одно сплошными линиями, другое, повернутое на 1800, - пунктирными линиями. Легко убедиться, что магнитные условия в этих положения совершенно одинаковые, а это значит, что в индикаторном режиме сельсин будет иметь два устойчивых положения в пределах одного оборота. Ясно, что это недопустимо. Сельсин должен иметь только одно устойчивое положение в пределах одного оборота, что возможно только в двухполюсном исполнении.

Рис. 5.13. К вопросу о числе полюсов сельсинов

Большинство сельсинов выпускается с тремя обмотками синхронизации. Почему? На рис. 5.14 показана индикаторная схема с сельсинами, имеющими по одной обмотке синхронизации (такие сельсины называются одоосными). Очевидно, что при повороте датчика на угол aд приемник повернется на такой же угол, но может как согласно с датчиком, так и противоположно ему, ибо магнитные условия при +aпи -aп совершенно одинаковые. Поэтому одноосные сельсины могут применяться только в установках, в которых направление поворота приемной оси заранее однозначно определено.

§ 5.8. Дифференциальный сельсин

Дифференциальные сельсины (ДС) применяются в тех случаях, когда приемная ось должна поворачиваться на угол, равный сумме или разности углов поворота двух задающих осей. На рис.5.15 представлена схема индикаторной связи с использованием в качестве приемника дифференциального сельсин.

Конструктивно дифференциальный сельсин не отличается от асинхронного двигателя с фазным ротором.

Рис. 5.15. Система синхронной связи с дифференциальным сельсином

Магнитные потоки возбуждения первого и второго датчиков Фв1, Фв2 индуцируют в обмотках синхронизации ЭДС, под действием которых протекают токи и возникают магнитные потоки статора и ротора дифференциального сельсина Фс, Фр. В согласованном положении (aд1 = 0, aд2 = 0) эти потоки совпадают и момент ДС равен нулю (рис. 5.16, а).

Рис. 5.16. К вопросу о работе дифференциального сельсина

При повороте датчиков на углы aд1 и aд2на такие же углы, но в обратном направлении (см. § 5.6) повернутся магнитные потоки статора и ротора ДС. Между ними образуется уголq в данном случае равныйсумме углов aд1 и aд2(рис.5.16 б). Стремление потоков Фс, Фр снова придти в согласованное положение приводит к образованию вращающего момента ДС, под действиемкоторого его ротор поворачивается на уголq. Направление поворота ротора ДС всегдасовпадает с направлением поворота вектора Фр к вектору Фс. Если датчики повернуть на углыaд1 и aд2в одном направлении, ротор ДС повернется на угол q, равный их разности.

§ 5.9. Магнитоэлектрические сельсины (магнесины)

Магнесины - миниатюрные бесконтактные сельсины применяются в системах индикаторной связи при коротких расстояниях между датчиком и приемником в условиях невысоких требований к точности передачи угла.

Рис. 5.17. Схема синхронной связи на магнесинах

Статор магнесина выполнен из листового пермалоя в виде тороида, на котором намотана кольцевая обмотка возбуждения (рис.5.17). Через 1200 на обмотке сделаны два отвода. Ротор - постоянный магнит цилиндрической формы.

При питании обмотки возбуждения переменным током возникает магнитный поток ФВ, который замыкается по тороиду и пульсирует с частотой сети возбуждения f1 (рис.5.18). В те моменты времени, когда поток максимальный, пермалоевый сердечник сильно насыщается и его проводимость l становится минимальной. В те же моменты времени, когда поток ФВ минимальный или равен нулю, проводимость пермалоя становится максимальной. Таким образом, за один период изменения потока ФВ проводимость пермалоя дважды изменяется по величине, т.е. она пульсирует сдвойной частотой f = 2f1.

В такт с проводимость сердечника изменяется поток постоянного магнита ФПМ, также замыкающийся по тороиду. Этот поток индуцирует в обмотке магнесина ЭДС двойной частоты. Если датчик и приемник находятся в согласованном положении, ЭДС двойной частоты в точках 1,2,3 датчика и соответственно 1,2,3 приемника равны и взаимно уравновешивают друг друга.

При повороте датчика на какой-то угол равенство ЭДС нарушается, по обмоткам протекают токи двойной частоты, которые, взаимодействуя с потоком постоянного магнита, развивают вращающий момент и поворачивают приемник на заданный угол. Следует заметить, что ЭДС основной частоты в точках 1,2,3 не зависит от положения ротора.

Обычно погрешность магнесинов составляет 1 ÷ 2,50.

Рис. 5.18. К вопросу о работе синхронной связи на магнесинах

Далее...

Социальные сети  

Реклама

Социальные сети