www.toehelp.ru

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию ...

/ / / § 2. ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ

§ 2. ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.

Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность наступления события А равна P(A)=p и, следовательно, вероятность противоположного события (ненаступления А) равна . Определим вероятность Pn(m) того, что событие А произойдет m раз при n испытаниях.

При этом заметим, что наступления или ненаступления события А могут чередоваться различным образом. Условимся записывать возможные результаты испытаний в виде комбинаций букв А и . Например, запись означает, что в четырех испытаниях событие осуществилось в 1-м и 4-м случаях и не осуществилось во 2-м и 3-м случаях.

Всякую комбинацию, в которую А входит m раз и входит n-m раз, назовем благоприятной. Количество благоприятных комбинаций равно количеству k способов, которыми можно выбрать m чисел из данных n; таким образом, оно равно числу сочетаний из n элементов по m, т.е.

Подсчитаем вероятности благоприятных комбинаций. Рассмотрим сначала случай, когда событие A происходит в первых m испытаниях и, следовательно, не происходит в остальных n-m испытаниях. Такая благоприятная комбинация имеет следующий вид:

Вероятность этой комбинации в силу независимости испытаний (на основании теоремы умножения вероятностей) составляет

Так как в любой другой благоприятной комбинации Вi событие A встречается также m раз, а событие происходит n-m раз, то вероятность каждой из таких комбинаций также равна . Итак

Все благоприятные комбинации являются, очевидно, несовместными. Поэтому (на основании аксиомы сложения вероятностей)

Следовательно,

(13)

или, так как

, то
(13')

Формула (13) называется формулой Бернулли *.

Пример 1. Вероятность попадания в цель при одном выстреле равна 0,6. Какова вероятность того, что 8 выстрелов дадут 5 попаданий? (Решение)

Часто необходимо знать, при каком значении m вероятность принимает наибольшее значение, т. е. требуется найти наивероятнейшее число наступления события A в данной серии опытов. Можно доказать, что число должно удовлетворять двойному неравенству

(14)

Заметим, что сегмент [np-q;np+p], в котором лежит , имеет длину (np+p)-(np-q)=p+q=1. Поэтому, если какой-либо из его концов не является целым числом, то между этими концами лежит единственное целое число, и определено однозначно. В том случае, если оба конца — целые числа, имеются два наивероятнейших значения: np-q и np+p.

Пример 2. Определить наивероятнейшее число попаданий в цель в примере 1. (Решение)

При больших значениях n подсчет вероятностей Pn(m) по формуле (13) связан с громоздкими вычислениями. В этом случае удобнее пользоваться следующей формулой:

(15)

, где (p не равно нулю и единице), a

Формула (15) выражает так называемую локальную теорему Лапласа **. Точность этой формулы повышается с возрастанием n.

Функция , как мы увидим в дальнейшем, играет очень большую роль в теории вероятностей. Ее значения при различных значениях аргумента приведены в Приложении (см. табл. I).

Пример 3. Игральную кость бросают 80 раз. Определить вероятность того, что цифра 3 появится 20 раз. (Решение)

Дальше...

* Я. Бернулли (1654-1705) - швейцарский математик.
** П. Лаплас (1749—1827) — французский математик и астроном.

Социальные сети  

Реклама

Социальные сети